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1. INTRODUCTION

Given f in C[a, b j, the space of real-valued continuous functions on the
interval [a, b], the best approximation in the uniform norm by an element of
Jrn , the polynomials degree <,n, is attained by a polynomial whose properties
are governed by the Tchebycheff theory (cf. [2 J). If a better approximation is
desired, then one may enlarge the approximating space to Jrn + l' a linear
space of dimension n + 2. In this paper we consider an enlargement of Jrn to
a space designated as Vn • That Vn might be a useful space for approximation
purposes was suggested to us by Norman H. Painter. Let F be a function
which is continuous and strictly positive on (-00, 00). For a real number a,
let Vn(a) be the space of functions of the form F(ax)P(x), where P belongs
to 'lrn. Let Vn be the union (over all real a) of the Vn(a). The situation may
be generalized to consider general Haar systems, rather than just 'lrn • While
some of our results will be valid in that context, we shall be content to state
and prove our results for the special Haar system 'lr n •

Although Vn is not a linear space, it is the union of linear spaces, Vn(a),
each of which has the Haar property. Moreover, Vn(O) = 'lrn, and the
underlying parameter space of Vn has dimension n + 2. Hence, as a space of
approximating functions, it could be compared reasonably with 'lr n +l' In this
regard Vn has both advantages and disadvantages. Naturally, if J, the
function to be approximated, is "F-like," then Vn is preferable. More
concretely, consider the case F(x) = eX. Then a function ¢ (icO) of Vn may
have up to n zeros in [a, b j, and this is true also of all its derivatives. A
function of 'lrn+ 1 may have up to n + 1 zeros, but its derivatives (icO) will
have less. Thus if f has several changes of curvature, an approximating
function from Vn may be preferable to one from 'lrn + I' On the other hand,
any f can be interpolated by a function of 'lr n + 1 at any n + 2 points. Such
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interpolation by a function of Vn is not possible if the sign changes of F at
the points are not consistent with the fact that a function of Vn has at most n
zeros. Thus, if I has several sign changes, approximation by a function of
Jrn+1 may be preferable. As noted above, each Vn(a) is a linear space with
the Haar property. Hence the Tchebycheff theory applies to the best approx­
imation over Vn(a). If a best approximation ~ exists in Vn, then it occurs in
some space Vn(a). Hence I - ~ has at least n + 2 points in an altemant.

As a function space, Vn has several desirable properties. For any choice of
F, it is dilation invariant; i.e., if ~ in in Vn , then so is ~(cx) for any scalar c.
In the case that F(x) = eX, Vn is also translation invariant. For the same F,
differentiation of Vn functions produce Vn functions, as it does for Jrn+ I' But
for a*- 0, differentiation reproduces each space Vn(a). Again with F(x) = eX,
Vn has "property Z" (cf. [3, p. 3]); i.e., two different functions of Vn may
intersect in at most m points, where m depends only on n. In fact, this Vn

bears some resemblance to the example of Rice on exponentials (cr. [3,
p. 42]). In this theory, property Z is a key ingredient in proving existence of
a best approximation. In our own treatment (cf. Theorem 2), we make use of
a growth condition and this allows consideration of many spaces Vn , where
property Z is not available.

Section 2 is devoted to existence theorems: i.e., for F with specified
properties, every lof C[a, b] has a best approximation in Vn • That this must
be proved is shown by the examples of Section 4, where, for convenience, all
examples have been collected.

In the third section, the uniqueness of the best approximation is discussed.
The subject being difficult and not fitting into known theories, our results are
sparse. However, something can be said in a particular case.

The existence of a best approximation from class Vn for every I in C[a, b1
depends primarily on the behaviour of F at 00 and at -00. Thus it is
convenient to treat separately the cases a ~ 0 and a ~ 0 and to consider only
intervals [a, b] for which 0 ~ a <b < 00. In the matter of notation, let

E(a, n, F,f, a, b) = E(a) = inf 11/(x) - F(ax) P(x)ll.
Pin 1ln

Where there is no possibility of confusion, the simpler notation, E(a), will be
used. By the ordinary Tchebycheff theory, the polynomial P giving the best
approximation is uniquely defined, and there is an altemant of at least n + 2
points. Let

Since

E(+) = inf E(a),
a;;'O

EH = inf E(a),
a<O

info 11/(x) - F(ax) P(x)11 = inf inf 11/(x) - F(ax) P(x)lI,
areal,Pm1ln areal PI01t n



APPROXIMATING FUNCTIONS 335

the number E measures the deviation from the best approximation. It is a
useful and easily verified fact that the function E(a) is continuous in a. In
view of this, the nonexistence of a best approximation can occur only if

lim inf E(a) = E
a~o:)

or lim inf E(a) = E.
a--oo

2. EXISTENCE THEOREMS

The hypotheses of our three existence theorems all involve the existence of
a limit for F, finite or not, at 00. The conclusions involve the existence of an
a ~ 0 and a P in tfn for which E( +) is attained. The results can then be
applied, where appropriate, to F(-x) in place of F(x) to obtain the existence
of a ~ 0 and P in tfn for which E(-) is attained.

Our first theorem is the simplest to state and to prove. That it cannot be
substantially improved is shown by Examples 4.1-4.3.

THEOREM 1. Let limx~oo F(x) = A, which is finite and positive. For any I
in CIa, b], there is an a ~ 0 lor which E(a) = E(+).

Denote by Qa(x) = F(ax) Pa(x) that unique function of Vn(a) such that
III - Qall = E(a). Since the function which is identically 0 belongs to each
Vn(a), then E(a) ~ 1IIII and IIQal1 ~ 211111 for each a. Under the present
circumstances, there exists an M> 0 such that 0 < l/F(ax) ~ M for all x in
la, b] and all a ~ O. Thus, for all a ~ 0,

Let

IIPal1 ~ 2M 11111.

lim inf E(a) = E( (0).
a~oo

(1 )

(2)

Let {am} denote a sequence tending to 00 such that lim inf in (2) becomes
lim. By virtue of (1), there exists a subsequence, also denoted by am' such
that P a converges uniformly in [a,b] to P, a polynomial of 7fn • If a > 0,
F(amx(converges uniformly on [a, b] to A. If a = 0, we take e> O. Then
F(amx) converges uniformly on [a + e, b] to A. Thus Qa

m
converges

uniformly here to AP(x), a function of ViO). Hence

sup II(x) - AP(x)1 ~ E( (0).
QEe<.x<b
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We may now take the limit of the left side, a monotone function of e, which
increases as e decreases to O. Since f - AP is continuous, this limit is
lif - APII· Thus E(O) ~ Ilf - APII ~ E( (0). Thus a best approximation must
be attained by some Qa' 0 ~ a < 00.

The point of our next theorem is that existence will hold when
limx~oo F(x) is 0 or 00 if the convergence is rapid enough. Taken together,
the two parts of the theorem imply, for example, that if F(x) = eX, then, for
each continuous f, there exists a such that E(a) = E.

THEOREM 2. Let F be continuous and strictly positive on 10, (0). Assume
that (i) for each x > 1.

. F(jJx)
11m -(jJ) = 0,
Il~oo F

or (ii)for each x > 1, this same limit is 00. Then,for eachfin qa, b], there
exists a in [0,(0) such that E(a) = E(+).

Hypothesis (ii) combined with the assumption of monotonicity of F yields
a function which is "order positive" in the terminology of Roulier and Varga
(cr. [4], where the concept is used for different purposes).

It is enough to consider the situation for which the first hypothesis (i) is
satisfied. The modifications in the proof for hypothesis (ii) are minor. It is
also enough to assume that the interval [a, b] is [0, 1]. In fact, the proof is
somewhat simpler if a > O.

Let E(O, 0) denote the best approximation to f by constant functions,

E(O, 0) = infllf - ell.
c

If, for every a, E(a) ~ E(O, 0), there is no problem. The best approximation
is given by a constant function. Thus, let is assume that there exists e > 0
such that for some values of a, E(a) ~ (1 - 2e) E(O, 0). Let A c denote the set
of such a,

A e = {a ~ 0 I E(a) ~ (1 - 2e) E(O, O)}.

It suffices to show that the nonempty set A e is bounded, hence compact. As
before, write Qa(x) = F(ax) Pa(x). We have

f(x) - E(a) ~ Qa(x) ~ f(x) + E(a), (3 )

Since f may be approximated by the zero function, E(O, 0) ~ Ilfll. We may
assume that Ilfll = f(x) for some x in [0, 1]. Thus, there exists a subinterval,
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J = [a, b] of [0, 1] with °<a, such thatf(x) ~ (1 - e) E(O, 0) for all x in J.
Hence, for x in J and a in At'

f(x) - E(a) ~ [f(x) - (1 - e) E(O, 0)] + eE(O, 0) ~ eE(O, 0) > 0.

Combining this inequality with (3) gives the existence of positive constants
M and N such that,

x in J, a in A e' (4 )

where Pais determined by its values on any n + I points xo, x I"'" X n in
[0, I]. We shall choose the points in the interval J = [a, b1 so that X o= a,
x n = (a + b)/2, and the other points are equally spaced between them. Write

where

The numbers A ii depend only on the points x; and the values Q" (xJ Thus
there are bounds for Au independent of a. Furthermore F(axn)jF(ax;):( I for
sufficiently large a by virtue of hypothesis (i). Hence

j = 0, I,... , n;

C independent of a. It follows from (4) that

or

0< M:( C'F(ab)jF(axn).

The limit, as a -> 00, is 0. If A t were unbounded, we would have M = 0,
contradicting (4). Hence, as desired, the set A f is bounded.

Our last existence theorem concerns the situation when F is a rational
function which is positive on (-00, (0). Thus its convergence to 00 or to a
at 00 is slow relative to the functions considered in Theorem 2. Example 4.2
involves a rational F for which the degree of the numerator exceeds that of
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the denominator. The nonexistence in Example 4.2 is typical of this situation.
In Example 4.3, nonexistence follows with another rational F for C[ a, b ],
where a > O. These examples explain and justify the statement of Theorem 3.
We remark that when the degrees are equal, the result follows directly from
Theorem 1. Our proof depends heavily on using the special Haar system 7rn •

THEOREM 3. Let F be a rational lunction, positive on (- 00, 00) and
such that the degree 01 the numerator does not exceed that 01 the
denominator. For every I in C[O, 1], there exists a in [0, 00) such that
E(a) = E(+).

It may be assumed that F(x) = S(x)/T(x), where both Sand T are real
positive polynomials on (-00, 00) with degree S ~ degree T. Let the leading
term of S be bMx

M and that of T be CNX
N

, where M ~ N. Then

_1_ = d( )N-M 1+ C(ax). ax ,
F(ax) 1 + B(ax)

(5 )

where Band C are rational functions such that B(ax) and C(ax) are
uniformly small for large a and for x in fe, 1],0 < e < 1. Thus, for x in this
same interval, there is a constant C3 such that,

Since II Q" II ~ 211/11,

IP,,(x)1 ~ :~~I~ ~ 2C3 11/11 a
N

-
M

,

Evaluation of P" at n + 1 fixed points in, say, [1, 1] with 0 < e <1 shows
that its coefficients satisfy a similar inequality; there is a constant C4 such
that

n

where P,,(x)=I:aia)x.i.
j~O

(6)

Another estimate for the coefficients of P" is required, and this depends on
the fact that a = 0 is the left end point of our interval. For x in the interval
[0, 1/a], there is a bound for 1/F(ax), say C5' which is independent of a.
Since II Q" II ~ 211/11,

IP,,(x)I~2C511/11, O~x~ l/a.
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Thus Pa(xla) has this same bound in [0, 1] so that there exists C6 such that

As above, let

j = 0,1,... , n. (7)

lim inf E(a) = E( (0),
a~C()

and let a(m) be a sequence such that lim infbecomes lim. By (6), each of the
n+ I sequences aia(m))[a(m)]M-N,j=O, I,...,n, is bounded. Thus, for a
subsequence of a(m), also denoted by a(m), there is convergence of each of
these n + 1 sequences. Let

lim aj(a(m))[a(m) jM-n = aj .
tn-+w

We note that, because of (7), aj = 0 if j <N - M. Using (5), we have

daj(a(m)) F(a(m)x) x
j

= (a(m)\M-na.(a(m))xM-,';-i \ I +B(a(m)x) /.
I I I + qa(m)x) \

For x in [e,I], this converges uniformly to ajx~f-N+j so that
limm~C() Qa(m)(x) = (lId) LJ=N-M ajxM- N+i = P(x), uniformly in fe, I].
Since M <N, P is an element of Jr n = ViO). Because of the choice of a(m),

sup If(x) - P(x)1 <E( (0).
e<x~ I

Since this is true for every e > 0,

E(O) <lif - Pil <E( (0).

3. UNIQUENESS

Because of the complicated intersection theory involved, not much of a
positive nature about uniqueness can be said. Rather artificial and unin­
teresting examples can be constructed which do exhibit uniqueness. For
example, let F(x) be identically 1 for x <1 and equal to x for x ~ 1.
Consider fin C[ 1,2] and restrict a to [1,(0); Vn is then the linear span of x,
x 2

, ... , x n + 1 so that both existence and uniqueness follow.
For a more interesting example, such as F(x) = eX, the situation is simple

only when the degree n is 0. Here a is unrestricted, and f is in the space
CIa, b) with 0 <a < b. Any two different functions from Vo can intersect in

640/40j4A
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at most one point. By methods related to the "betweeness property" and
"zero sign compatibility" (cf. [1)), one can show uniqueness easily.

For n ~ 1, with the same F, one can show by the usual Rolle's theorem
argument that two different functions of Vn may intersect in as many as
2n + 1 points. Since this is no smaller than the dimension of the parameter
space, then dificulties may follow (cf. [2, p. 146)). In fact, we may show, by
example, that uniqueness does not hold even for n = 1. For definiteness, take
the interval as [0, 1], and let Tx = 1 - x, a transformation taking [0, 1] onto
itself, and such that VI is preserved. Thus, if g(x) = eaX(ax +b),
(g 0 T)(x) = e-aX(-ax + (a +b)) ea. Except when g is a constant, these are
different functions. Letfbe a function of qo, 1] which is invariant under T;
i.e.,f(x) = U 0 T)(x) for x in [0, 1]. Let g be a best approximation to ffrom
VI' Since

Ilf - gil = IIU 0 T) - (g 0 T)II = Ilf - (g 0 T)II,

then goT is also a best approximation, and a different one unless g is
constant. Such an f is produced in Example 4.4. It is a fact of some interest
that for n = 1, there are no more than two best approximations.

THEOREM 4. Let F(x) = eX, and n = 1. For any f in C[O, 1], there exist
at most two different functions of VI giving a best approximation.

The details of the proof are fairly complicated, and we content ourselves
with an outline. Let Qa and Q/3 be the best approximations to f in the classes
Vt(a) and VJj3), respectively. The Tchebycheff theory applies to each so
that each function Qa - f and Q/3 - f has an alternant of at least 3 points.
Let Qa - f have m points in an alternant. If E(j3) ~ E(a), then
Qa - Q/3 = (Qa - f) - (Q/3 - f) must have at least m - 1 zeros (interlacing
the points of an alternant for Qa - f) But the maximum number of inter­
sections for different functions in VI is 3. Hence, if, for some a, Qa - f has 5
or more points in an alternant, then Qa is the unique best approximant.

At the other extreme, assume that, for each a, Qa - fhas exactly 3 points
in an alternant. It can then be shown that if Qa(x) = eaX(ax +b) with a =F 0,
then E(a) > E. The idea is to consider 2 zeros of Qa - f, say Xl and X 2 '

which interlace the 3 points of an alternant, and to choose y in a
semineighbourhood of a. Coefficients c and d are chosen so that
Q(x) = eYX(cx + d) agrees with f at XI and x 2 • Then Q is a better approx­
imant to f than Qa' Thus all best approximants are of the form
Qa(x) = beax. If there are two different such, then they must intersect in 2
points, an impossibility. Hence, again we have a unique best approximant.

For the intermediate case, assume that for some (at least one) values of a,
Qa - f has 4 points in an alternant, and that none has more than 4. If there
is a best approximant of the form beaX, then, as above, it is the unique best
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approximant. Let us assume otherwise; thus any a giving a best approx­
imation is such that Qa - f has 4 points in an alternant. If there are 2 such,
say a and fl, let XI be the first point in an alternant for Qa - f, and let YL be
the first point in an alternant for Q13 - f It can be shown that the functional
values are of opposite sign; i.e., (Qa(x 1) - f(x l ))(QI3(YI) - f(YI)) = -E 2(a).
Hence there are at most two best approximants.

4. EXAMPLES

In our first example of nonexistence, F shows bounded oscillatory
behavior in contrast to the hypotheses of Theorem I;

F(x) = 2

= 2 + om sin(x/2 m
)

on 10,2n],

12m+ I 2m + 2 I ° Ion n, n, m= , ,... ,
(4.1 )

where i5m increases steadily from °to 1. F(2 mx) converges uniformly on
[2n, 4n I to f(x) = 2 + sin x, a function of C [2n, 4n [. For this f, E( +) = 0; but
it is clear there is no polynomial P and a such that F(ax) P(x) = f(x).

In our second example, F increases steadily to 00 at 00, but not so quickly
as the functions specified in Theorem 2;

(4.2)

For a>O, define Pa(x)=a- 3 +a- 2x. Then F(ax)Pa(x) converges
uniformly to f(x) = x 3

, a function of CI0, II. Thus, again E( +) = 0, but there
is no linear polynomial P nor a such that f(x) = P(x) F(ax). The example
also has relevance to Theorem 3. Here F is a rational function, but the
degree of the numerator exceeds that of the denominator.

As a function which decreases steadily to °at 00, we consider

F(x) = 1/(1 + x 2
). (4.3)

Then a 2F(ax) converges uniformly on 1I,2] tof(x) = l/x 2
, a function of

ClI, 2]. There is no polynomial P (of any degree) nor a such that F(ax) P(x)
equals f(x). This example also applies to Theorem 3, for which the interval
la, hi has a = 0. Let

f(x) = (x + ~) e- x /
4

,

=f(l-x),

X in 10,1],

X in [1, II,
(4.4 )

where f has a peak value at x = 1 and equal minimum values at x = °and
x = I. The best approximation to f by a constant function is given by
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Hf(~) - f(O) ]. Since there are 3 points in an alternant, this also gives the
best approximation by a linear function. Thus, with n = 1,

E(O) = Hfm - f(O)] = 2e- 1/8
-;.

We show that E(-~) <E(O). Thus the value of a producing inf E(y) is not 0
and does not lead to a constant function. By the calculation in Section 3,
since f is invariant under transformation T, there are two different best
approximants. In fact, to show E(- ~) <E(O), it is enough to consider the
function Q(x)=(x+~)e-XI4 on [0,1];

Q(x) - f(x) = 0

= r [Q'(t)-f'(t)]dt,
• 1/2

on [0,1],

x in [1, I] .

Sincef'(t) = -Q'(1 - t) and Q'(~) = 0, the above equals

Jx dtr [Q"(s) - Q"(1 - s)] ds.
1/2 J12

Since the third derivative of Q is positive over the given range, the integrand
is positive, and

0< Q(x) - f(x) <Q(I) - f(l) = (?e- 1/4
- 7)/2, x In [~, 1].

The latter quantity is less than E(O), as desired.
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